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Login to Databricks Community Edition

• Sign up for Databricks Community Edition for free 
• We will use this for the tutorial
• Once you sign up, you can continue to use it to learn and 

experiment on a dedicated data sciences engineering 
environment

https://databricks.com/try



Go to databricks.com/try



Sign up for Community Edition
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Log into DBCE



Create a Cluster on DBCE
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Create a Cluster on DBCE



Attach a Notebook to your Cluster



Attach a Notebook to your Cluster



Attach a Notebook to your Cluster



Attach a Notebook to your Cluster



Broad Adoption of ML

and many many more customers in different industries and segments

Internet of ThingsDigital PersonalizationHealthcare and Genomics Fraud Prevention

Huge disruptive innovations are affecting most enterprises on the planet
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“Hidden Technical Debt in Machine Learning Systems,” Google NIPS 2015  

Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small green box 
in the middle.  The required surrounding infrastructure is vast and complex.

Hardest Part of ML isn’t ML, it’s Data



Data & ML Tech and People are in Silos

DATA 
ENGINEERS

x
DATA 
SCIENTISTS



ML Lifecycle is Manual, Inconsistent 
and Disconnected

● Ad hoc approach to track 
experiments

● Very hard to reproduce 
experiments

Prep Data
● Multiple tightly coupled 

deployment options 
● Different monitoring approach 

for each framework

Build Model Deploy Model
● Low level integrations for 

Data and ML
● Difficult to track data used 

for a model



The need for 
standardization



Day in the life of a data scientist (tracking edition)

Elasticnet model (alpha=0.01, l1_ratio=1.0):
  RMSE: ??
  MAE: 51.051828604086325
  R2: 0.3951809598912357

Elasticnet model (alpha=?, l1_ratio=0.75):
  RMSE: 65.28994906390733
  MAE: 53.759148284349266
  R2: ??

Elasticnet model (alpha=0.01, l1_ratio=?):
  RMSE: 71.40362571026475
  MAE: ??
  R2: 0.2291130640003659
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Did anything change in the 
feature engineering?



Day in the life of a data scientist (tracking edition)

Elasticnet model (alpha=0.01, l1_ratio=1.0):
  RMSE: ??
  MAE: 51.051828604086325
  R2: 0.3951809598912357

Elasticnet model (alpha=?, l1_ratio=0.75):
  RMSE: 65.28994906390733
  MAE: 53.759148284349266
  R2: ??

Elasticnet model (alpha=0.01, l1_ratio=?):
  RMSE: 71.40362571026475
  MAE: ??
  R2: 0.2291130640003659

How did the hyperparameters 
change?
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Elasticnet model (alpha=0.01, l1_ratio=1.0):
  RMSE: ??
  MAE: 51.051828604086325
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  R2: 0.2291130640003659

What data was this model 
trained on?
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Elasticnet model (alpha=0.01, l1_ratio=1.0):
  RMSE: ??
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How did the offline metrics 
change?



Day in the life of a data scientist (tracking edition)

Elasticnet model (alpha=0.01, l1_ratio=1.0):
  RMSE: ??
  MAE: 51.051828604086325
  R2: 0.3951809598912357

Elasticnet model (alpha=?, l1_ratio=0.75):
  RMSE: 65.28994906390733
  MAE: 53.759148284349266
  R2: ??

Elasticnet model (alpha=0.01, l1_ratio=?):
  RMSE: 71.40362571026475
  MAE: ??
  R2: 0.2291130640003659

What else am I missing?



The difference between releasing Software 
and deploying ML Models



Write code

Software

Write unit tests

Send for review

Get approvals

Commit

Release testing

Release
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Experiment with params, 
model structure

Deploy … by email?

Monitor performance and 
trigger retraining
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Write code

Software ML Models

Write unit tests

Send for review

Get approvals

Commit

Release testing

Release

Analyze data

Put data into the right 
format

Write model code

Train and evaluate model

Experiment with params, 
model structure

Deploy … by email?

Monitor performance and 
trigger retraining

Meet a functional 
specification

Optimize a metric, 
e.g. CTR

Goal

Depends on code Depends on data, 
code, model, params, 

...

Quality

Typically one 
software stack

Combination of many 
libraries, tools, 

...

Tools

Works 
deterministically

Keeps changing with 
data, etc.

Outcome



In summary, deploying ML Models is hard! 



ML Lifecycle and  Challenges

Delta

Tuning Model Mgmt

Raw Data ETL TrainFeaturize Score/Serve
Batch + Realtime

Monitor 
Alert, Debug

Deploy

AutoML, 
Hyper-p. search

Experiment 
Tracking

Remote Cloud 
Execution

Project Mgmt
(scale teams)

Model 
Exchange

Data
Drift

Model
Drift

Orchestration 
(Airflow, Jobs)

A/B
Testing

CI/CD/Jenkins 
push to prod

Feature 
Repository 

Lifecycle 
mgmt.

RetrainUpdate FeaturesProduction Logs

Zoo of Ecosystem Frameworks

Collaboration Scale Governance

An open source platform for the 
machine learning lifecycle



Introducing MLflow
Unveiled in June 2018, MLflow is the only open source framework 
designed to manage the complete Machine Learning Lifecycle.

Model
Registry



Introducing MLflow
Unveiled in June 2018, MLflow is the only open source framework 
designed to manage the complete Machine Learning Lifecycle.
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Components

Tracking

Record and query
experiments: code,

data, config, 
results

Projects

Packaging format
for reproducible 

runs on any 
platform

Models

General format 
that standardizes

deployment paths

Model 
Registry

Centralized and 
collaborative 

model lifecycle 
management

mlflow.org github.com/mlflow twitter.com/MLflow



Components

Tracking

Record and query
experiments: code,

data, config, 
results

Projects

Packaging format
for reproducible 

runs on any 
platform

Models

General format 
that standardizes

deployment paths

Model 
Registry

Centralized and 
collaborative 

model lifecycle 
management

new

mlflow.org github.com/mlflow twitter.com/MLflow



Tracking

Notebooks

Local Apps

Cloud Jobs

UI

API

Tracking Server

Parameters Metrics Artifacts

ModelsMetadata Spark 
Data Source



Key Concepts in Tracking

Parameters: key-value inputs to your code
Metrics: numeric values (can update over time)
Artifacts: arbitrary files, including models
Source: what code ran?



   # Scikit Learn Linear Regression via ElasticNet
   lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
   lr.fit(train_x, train_y)

   # Predict
   predicted_qualities = lr.predict(test_x)

   # Evaluate Metrics
   (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)



with mlflow.start_run() as run:

   # Scikit Learn Linear Regression via ElasticNet
   lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
   lr.fit(train_x, train_y)

   # Predict
   predicted_qualities = lr.predict(test_x)

   # Evaluate Metrics
   (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)

   # Log
   mlflow.log_param("alpha", alpha)
   ...



GitHub Demo
https://github.com/dennyglee/mlflow-diabetes-example



Comparing Runs Contour Plot 



Projects

Project Spec

Code MetadataConfig

Local Execution

Remote Execution



Example MLflow Project
my_project/
├── MLproject
│ 
│  
│ 
│ 
│
├── conda.yaml
├── main.py
└── model.py
    ...

conda_env: conda.yaml

entry_points:
  main:
    parameters:
      training_data: path
      lambda: {type: float, default: 0.1}
    command: python main.py {training_data} {lambda}

$ mlflow run git://<my_project>

mlflow.run(“git://<my_project>”, ...)



Model Format

Flavor 2Flavor 1

Simple model flavors 
usable by many tools

Containers

Batch & Stream Scoring

Cloud Inference Services

In-Line Code

Models



Example MLflow Model
my_model/
├── MLmodel
│ 
│  
│ 
│ 
│
└── estimator/
    ├── saved_model.pb
    └── variables/
        ...

Usable by tools that understand
TensorFlow model format

Usable by any tool that can run
Python (Docker, Spark, etc!)

run_id: 769915006efd4c4bbd662461
time_created: 2018-06-28T12:34
flavors:
  tensorflow:
    saved_model_dir: estimator
    signature_def_key: predict
  python_function:
    loader_module: mlflow.tensorflow



Automated Jobs

REST Serving

Downstream Users

Reviewers + CI/CD Tools

Model Registry

Experimental Staging A/B Tests Production

Model Registry
Data Scientists Deployment Engineers



Model Registry: Benefits

One Collaborative Hub

● Central Model Repository

● Overview of versions in 
Staging/Production/etc.

● Search/filter/pagination
1

2

3

3

1

2

3



Model Registry: Benefits

2

1

Management of the entire ML Lifecycle (MLOps)

● Overview of active model versions and their deployment stage

● Request/Approval workflow for transitioning deployment stages

1

2



1

Visibility

● Full activity log of stage transition 
requests, approvals, etc.

1

Model Registry: Benefits



1.a

1.b

1.c

Governance and Auditability

● Full provenance from Model marked 
production in the Registry to …

●
○ Run that produced the model
○ Notebook that produced the 

run
○ Exact revision history of the 

notebook that produced the 
run

1.a

1.b

1.c

Model Registry: Benefits



Notebook Demo
https://github.com/dennyglee/tech-talks/blob/master/sa

mples/MLflow%20Diabetes%20Example%20(with%20MLfl
ow%20Registry).ipynb



Towards more principled 
Data Science and ML

: An Open Source ML Platform

mlflow.org github.com/mlflow twitter.com/MLflow



Hands-on Workshop

bit.ly/mlflow-boss-2020


