
Simplifying the
Machine Learning Lifecycle

Agenda
/ Broad Adoption of ML … and its issues

/ The need for standardization

/ ML development challenges

/ How MLflow tackles these

Login to Databricks Community Edition

• Sign up for Databricks Community Edition for free
• We will use this for the tutorial
• Once you sign up, you can continue to use it to learn and

experiment on a dedicated data sciences engineering
environment

https://databricks.com/try

Go to databricks.com/try

Sign up for Community Edition

Sign up for Community Edition

Log into DBCE

Create a Cluster on DBCE

Create a Cluster on DBCE

Create a Cluster on DBCE

Create a Cluster on DBCE

Attach a Notebook to your Cluster

Attach a Notebook to your Cluster

Attach a Notebook to your Cluster

Attach a Notebook to your Cluster

Broad Adoption of ML

and many many more customers in different industries and segments

Internet of ThingsDigital PersonalizationHealthcare and Genomics Fraud Prevention

Huge disruptive innovations are affecting most enterprises on the planet

ML
Code

Configuration
Data Collection

Data
Verification

Feature
Extraction

Machine
Resource

Management

Analysis Tools

Process
Management Tools

Serving
Infrastructure

Monitoring

“Hidden Technical Debt in Machine Learning Systems,” Google NIPS 2015

Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small green box
in the middle. The required surrounding infrastructure is vast and complex.

Hardest Part of ML isn’t ML, it’s Data

Data & ML Tech and People are in Silos

DATA
ENGINEERS

x
DATA
SCIENTISTS

ML Lifecycle is Manual, Inconsistent
and Disconnected

● Ad hoc approach to track
experiments

● Very hard to reproduce
experiments

Prep Data
● Multiple tightly coupled

deployment options
● Different monitoring approach

for each framework

Build Model Deploy Model
● Low level integrations for

Data and ML
● Difficult to track data used

for a model

The need for
standardization

Day in the life of a data scientist (tracking edition)

Elasticnet model (alpha=0.01, l1_ratio=1.0):
 RMSE: ??
 MAE: 51.051828604086325
 R2: 0.3951809598912357

Elasticnet model (alpha=?, l1_ratio=0.75):
 RMSE: 65.28994906390733
 MAE: 53.759148284349266
 R2: ??

Elasticnet model (alpha=0.01, l1_ratio=?):
 RMSE: 71.40362571026475
 MAE: ??
 R2: 0.2291130640003659

Day in the life of a data scientist (tracking edition)

Elasticnet model (alpha=0.01, l1_ratio=1.0):
 RMSE: ??
 MAE: 51.051828604086325
 R2: 0.3951809598912357

Elasticnet model (alpha=?, l1_ratio=0.75):
 RMSE: 65.28994906390733
 MAE: 53.759148284349266
 R2: ??

Elasticnet model (alpha=0.01, l1_ratio=?):
 RMSE: 71.40362571026475
 MAE: ??
 R2: 0.2291130640003659

Did anything change in the
feature engineering?

Day in the life of a data scientist (tracking edition)

Elasticnet model (alpha=0.01, l1_ratio=1.0):
 RMSE: ??
 MAE: 51.051828604086325
 R2: 0.3951809598912357

Elasticnet model (alpha=?, l1_ratio=0.75):
 RMSE: 65.28994906390733
 MAE: 53.759148284349266
 R2: ??

Elasticnet model (alpha=0.01, l1_ratio=?):
 RMSE: 71.40362571026475
 MAE: ??
 R2: 0.2291130640003659

How did the hyperparameters
change?

Day in the life of a data scientist (tracking edition)

Elasticnet model (alpha=0.01, l1_ratio=1.0):
 RMSE: ??
 MAE: 51.051828604086325
 R2: 0.3951809598912357

Elasticnet model (alpha=?, l1_ratio=0.75):
 RMSE: 65.28994906390733
 MAE: 53.759148284349266
 R2: ??

Elasticnet model (alpha=0.01, l1_ratio=?):
 RMSE: 71.40362571026475
 MAE: ??
 R2: 0.2291130640003659

What data was this model
trained on?

Day in the life of a data scientist (tracking edition)

Elasticnet model (alpha=0.01, l1_ratio=1.0):
 RMSE: ??
 MAE: 51.051828604086325
 R2: 0.3951809598912357

Elasticnet model (alpha=?, l1_ratio=0.75):
 RMSE: 65.28994906390733
 MAE: 53.759148284349266
 R2: ??

Elasticnet model (alpha=0.01, l1_ratio=?):
 RMSE: 71.40362571026475
 MAE: ??
 R2: 0.2291130640003659

How did the offline metrics
change?

Day in the life of a data scientist (tracking edition)

Elasticnet model (alpha=0.01, l1_ratio=1.0):
 RMSE: ??
 MAE: 51.051828604086325
 R2: 0.3951809598912357

Elasticnet model (alpha=?, l1_ratio=0.75):
 RMSE: 65.28994906390733
 MAE: 53.759148284349266
 R2: ??

Elasticnet model (alpha=0.01, l1_ratio=?):
 RMSE: 71.40362571026475
 MAE: ??
 R2: 0.2291130640003659

What else am I missing?

The difference between releasing Software
and deploying ML Models

Write code

Software

Write unit tests

Send for review

Get approvals

Commit

Release testing

Release

Write code

Software ML Models

Write unit tests

Send for review

Get approvals

Commit

Release testing

Release

Analyze data

Put data into the right
format

Write model code

Train and evaluate model

Experiment with params,
model structure

Deploy … by email?

Monitor performance and
trigger retraining

Write code

Software ML Models

Write unit tests

Send for review

Get approvals

Commit

Release testing

Release

Analyze data

Put data into the right
format

Write model code

Train and evaluate model

Experiment with params,
model structure

Deploy … by email?

Monitor performance and
trigger retraining

Meet a functional
specification

Optimize a metric,
e.g. CTR

Goal

Write code

Software ML Models

Write unit tests

Send for review

Get approvals

Commit

Release testing

Release

Analyze data

Put data into the right
format

Write model code

Train and evaluate model

Experiment with params,
model structure

Deploy … by email?

Monitor performance and
trigger retraining

Meet a functional
specification

Optimize a metric,
e.g. CTR

Goal

Depends on code Depends on data,
code, model, params,

...

Quality

Write code

Software ML Models

Write unit tests

Send for review

Get approvals

Commit

Release testing

Release

Analyze data

Put data into the right
format

Write model code

Train and evaluate model

Experiment with params,
model structure

Deploy … by email?

Monitor performance and
trigger retraining

Meet a functional
specification

Optimize a metric,
e.g. CTR

Goal

Depends on code Depends on data,
code, model, params,

...

Quality

Typically one
software stack

Combination of many
libraries, tools,

...

Tools

Write code

Software ML Models

Write unit tests

Send for review

Get approvals

Commit

Release testing

Release

Analyze data

Put data into the right
format

Write model code

Train and evaluate model

Experiment with params,
model structure

Deploy … by email?

Monitor performance and
trigger retraining

Meet a functional
specification

Optimize a metric,
e.g. CTR

Goal

Depends on code Depends on data,
code, model, params,

...

Quality

Typically one
software stack

Combination of many
libraries, tools,

...

Tools

Works
deterministically

Keeps changing with
data, etc.

Outcome

In summary, deploying ML Models is hard!

ML Lifecycle and Challenges

Delta

Tuning Model Mgmt

Raw Data ETL TrainFeaturize Score/Serve
Batch + Realtime

Monitor
Alert, Debug

Deploy

AutoML,
Hyper-p. search

Experiment
Tracking

Remote Cloud
Execution

Project Mgmt
(scale teams)

Model
Exchange

Data
Drift

Model
Drift

Orchestration
(Airflow, Jobs)

A/B
Testing

CI/CD/Jenkins
push to prod

Feature
Repository

Lifecycle
mgmt.

RetrainUpdate FeaturesProduction Logs

Zoo of Ecosystem Frameworks

Collaboration Scale Governance

An open source platform for the
machine learning lifecycle

Introducing MLflow
Unveiled in June 2018, MLflow is the only open source framework
designed to manage the complete Machine Learning Lifecycle.

Model
Registry

Introducing MLflow
Unveiled in June 2018, MLflow is the only open source framework
designed to manage the complete Machine Learning Lifecycle.

140
120
100
80
60
40
20
0

0 5 10 15 20 25 30 35 40 45

Months since Project Launch

of

 C
on

tr
ib

ut
or

s

Components

Tracking

Record and query
experiments: code,

data, config,
results

Projects

Packaging format
for reproducible

runs on any
platform

Models

General format
that standardizes

deployment paths

Model
Registry

Centralized and
collaborative

model lifecycle
management

mlflow.org github.com/mlflow twitter.com/MLflow

Components

Tracking

Record and query
experiments: code,

data, config,
results

Projects

Packaging format
for reproducible

runs on any
platform

Models

General format
that standardizes

deployment paths

Model
Registry

Centralized and
collaborative

model lifecycle
management

new

mlflow.org github.com/mlflow twitter.com/MLflow

Tracking

Notebooks

Local Apps

Cloud Jobs

UI

API

Tracking Server

Parameters Metrics Artifacts

ModelsMetadata Spark
Data Source

Key Concepts in Tracking

Parameters: key-value inputs to your code
Metrics: numeric values (can update over time)
Artifacts: arbitrary files, including models
Source: what code ran?

 # Scikit Learn Linear Regression via ElasticNet
 lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
 lr.fit(train_x, train_y)

 # Predict
 predicted_qualities = lr.predict(test_x)

 # Evaluate Metrics
 (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)

with mlflow.start_run() as run:

 # Scikit Learn Linear Regression via ElasticNet
 lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
 lr.fit(train_x, train_y)

 # Predict
 predicted_qualities = lr.predict(test_x)

 # Evaluate Metrics
 (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)

 # Log
 mlflow.log_param("alpha", alpha)
 ...

GitHub Demo
https://github.com/dennyglee/mlflow-diabetes-example

Comparing Runs Contour Plot

Projects

Project Spec

Code MetadataConfig

Local Execution

Remote Execution

Example MLflow Project
my_project/
├── MLproject
│
│
│
│
│
├── conda.yaml
├── main.py
└── model.py
 ...

conda_env: conda.yaml

entry_points:
 main:
 parameters:
 training_data: path
 lambda: {type: float, default: 0.1}
 command: python main.py {training_data} {lambda}

$ mlflow run git://<my_project>

mlflow.run(“git://<my_project>”, ...)

Model Format

Flavor 2Flavor 1

Simple model flavors
usable by many tools

Containers

Batch & Stream Scoring

Cloud Inference Services

In-Line Code

Models

Example MLflow Model
my_model/
├── MLmodel
│
│
│
│
│
└── estimator/
 ├── saved_model.pb
 └── variables/
 ...

Usable by tools that understand
TensorFlow model format

Usable by any tool that can run
Python (Docker, Spark, etc!)

run_id: 769915006efd4c4bbd662461
time_created: 2018-06-28T12:34
flavors:
 tensorflow:
 saved_model_dir: estimator
 signature_def_key: predict
 python_function:
 loader_module: mlflow.tensorflow

Automated Jobs

REST Serving

Downstream Users

Reviewers + CI/CD Tools

Model Registry

Experimental Staging A/B Tests Production

Model Registry
Data Scientists Deployment Engineers

Model Registry: Benefits

One Collaborative Hub

● Central Model Repository

● Overview of versions in
Staging/Production/etc.

● Search/filter/pagination
1

2

3

3

1

2

3

Model Registry: Benefits

2

1

Management of the entire ML Lifecycle (MLOps)

● Overview of active model versions and their deployment stage

● Request/Approval workflow for transitioning deployment stages

1

2

1

Visibility

● Full activity log of stage transition
requests, approvals, etc.

1

Model Registry: Benefits

1.a

1.b

1.c

Governance and Auditability

● Full provenance from Model marked
production in the Registry to …

●
○ Run that produced the model
○ Notebook that produced the

run
○ Exact revision history of the

notebook that produced the
run

1.a

1.b

1.c

Model Registry: Benefits

Notebook Demo
https://github.com/dennyglee/tech-talks/blob/master/sa

mples/MLflow%20Diabetes%20Example%20(with%20MLfl
ow%20Registry).ipynb

Towards more principled
Data Science and ML

: An Open Source ML Platform

mlflow.org github.com/mlflow twitter.com/MLflow

Hands-on Workshop

bit.ly/mlflow-boss-2020

