
© 2019 Ververica

Stephan Ewen

Stateful Functions @ BOSS



© 2019 Ververica2

Disclaimer

This is an early-stage open source project

Most designs and choices here were validated via user workloads, 

not via rigorous academic evaluations and benchmarks.

Not that we would not welcome academic evaluation and rigor. 

Collaborations welcome *wink*.



© 2019 Ververica3

Alternative Title

An Excursion of a Stream Processor

into the World of Applications

and (Micro) Services



© 2019 Ververica4

Some (non scientific) Motivation



© 2019 Ververica5

Let’s look at some

(micro) services interacting



© 2019 Ververica6

API 

Gateway

λ
λ

λλ

λ
λ

λλ

λ
λ

λλ

Get/Put

or SQL

RPC or

Message Queue

Some interacting services



© 2019 Ververica7

Interaction is typically driven by the Application Layer

API 

Gateway

λ
λ

λλ

λ
λ

λλ

λ
λ

λλ



© 2019 Ververica8

Interaction is typically driven by the Application Layer

API 

Gateway

λ
λ

λλ

λ
λ

λλ

λ
λ

λλ

For any failure during communication, it 

becomes hard to reason about what effects 

did or did not already happen

X



© 2019 Ververica9

How to ensure consistency with failed communication

• “Two Generals Problem”: Don’t know if the message arrived or not

•But, we are not interested in whether the message was communicated 

between components exactly-once, but in whether some effects from the 

message were materialized consistently

• Lots of solutions for that
– Distributed transactions

– Do/undo workflows

– Idempotent operations

– …



© 2019 Ververica10

Can we not run everything as a transaction?

API 

Gateway

λ
λ

λλ

λ
λ

λλ

λ
λ

λλ

One TXN

Generally need an external TXN 

coordinator that the DB and MQ 

coordinate with



© 2019 Ververica11

Can we not run everything as a transaction?

API 

Gateway

λ
λ

λλ

λ
λ

λλ

λ
λ

λλ

One TXN

Generally need an external TXN 

coordinator that the DB and MQ 

coordinate with
Except, if the DB was also a MQ



© 2019 Ververica12

Thought experiment:

Let’s reverse the DB / App roles

(acting / reacting)



© 2019 Ververica13

DB

Application /

Business Logic
Database

Application /

Business Logic

Application Drives Database Drives

Input events

(ingress)

Result events

(egress)

SQL / Get()/Put()
HTTP / gRPC

“reacting”

messaging / the “boss”

Inverting the Roles of Application and Database

Input events Output events



© 2019 Ververica14

The Same Layer handles State and Messaging

X

application logic are pure/stateless functions,

ergo idempotent by default

state updates and messaging are

easily made “atomic”

λ
λ

λλ

λ
λ

λλ

λ
λ

λλ

API 

Gateway



© 2019 Ververica15

There are many solutions to solving

integrated state and messaging.

From a more high-level perspective, it is what Stream 

Processors have worked on the last years.

In its core, it is a distributed transaction log problem.



© 2019 Ververica16

A Brief Excursion into 

Apache Flink

Which takes the role similar

to the Database here



© 2019 Ververica17

Flink Runtime

Stateful Computations over Data Streams

Stateful

Stream Processing

Streams, State, Time

Event-driven 

Applications

Stateful Functions

Streaming Analytics

SQL &

Dynamic Tables

Apache Flink: Analytics and Applications on Streaming Data



© 2019 Ververica18

Bulk Store (HDFS, S3, Azure Blob, GCS, NAS, …)

Flink Data Streaming Application

ZooKeeper

(or etcd/Konsul)

leader election,

checkpoint pointer Async State Persistence

Data keeps flowing directly between processes. Persistence is an “asynchronous background task”.



© 2019 Ververica19

Fault Tolerant State: Event Sourcing + Memory Image

event stream

persists events

(temporarily)

event /

command

Process

main memory

update local

variables/structures

periodically snapshot 

the memory



© 2019 Ververica20

Fault Tolerant State: Event Sourcing + Memory Image

Recovery: Restore snapshot and replay events 

since snapshot

persists events

(temporarily)
Process

event stream



© 2019 Ververica21

Distributed Snapshots (Async Barrier Snapshots)

Paris Carbone et al.

“State Management in Apache Flink - Consistent Stateful Distributed Stream Processing.” 

PVLDB Vol. 10, No. 12, 2017



© 2019 Ververica22

Distributed Snapshots (Async Barrier Snapshots)

No in-flight data captured Feedback in-flight data captured,

cf. Chandy-Lamport Algorithm



© 2019 Ververica23

How big can you go? - Alibaba: Double 11 / Singles Day

Search Rec. SecurityBIAds

incl. sub-second updates to the GMV dashboard
Real-time Data Applications

Infrastructure

>5K
nodes

Data Size

985PB

Throughput (Peak)

2.5B
events/sec

Latency

Sub-sec

State Size (Biggest)

100TB>500K
CPU cores

Learn more: Optimizations in Blink Runtime for Global Shopping Festival at Alibaba

https://www.youtube.com/watch?v=KPXWg-MllFQ


© 2019 Ververica24

How small can you go? - U-Hopper FogGuru

FogGuru is a platform for developing and deploying fog applications in resource-constrained devices. 

Learn more: FogGuru: a Fog Computing Platform Based on Apache Flink

Cluster of 5 Raspberry Pi 3b+ Data volume: 800 events/secDocker Swarm + Flink + Mosquitto

“The Fridge”

https://hal.inria.fr/hal-02463206/document


© 2019 Ververica25

Enter Stateful Functions

Polyglot Event-Driven Functions for

Distributed Stateful Applications



© 2019 Ververica26

What is Stateful Functions?

An API that simplifies building distributed stateful applications ...



© 2019 Ververica27

➔ Stateful Event-driven Entities / Actors



© 2019 Ververica28

Stateful Functions - API

Multi-language Support

Building block: Functions

● Small piece of logic that represents entities

● Invokable through messages

● Can be implemented in any

programming language

● Inactive functions don’t consume resources

An API that simplifies building distributed stateful applications ...

f(a,b)

f(a,b)

f(a,b)

f(a,b)

f(a,b)

f(a,b)



© 2019 Ververica29

Stateful Functions - API

Consistent state

Dynamic messaging

● Arbitrary communication between functions

● Functions message each other by logical 

addresses - no service discovery needed

● Functions keep local state that is 

persistent and integrated with messaging

An API that simplifies building distributed stateful applications ...

f(a,b)

f(a,b)

f(a,b)

f(a,b)

f(a,b)event ingress

event egress

f(a,b)

● Out-of-box exactly-once state

access / updates & messaging



© 2019 Ververica30

Stateful Functions - API

Snapshots, no Database 

● Uses Flink’s distributed snapshots model for 

state durability and fault tolerance

● Requires only a simple blob storage tier to 

store state snapshots

Mass Storage

(S3, GCS, ECS, HDFS, 

Azure Blob, OSS, NFS, …)

snapshot

state

f(a,b)

f(a,b)

f(a,b)

f(a,b)

f(a,b)event ingress

event egress

f(a,b)

… with a runtime build for serverless architectures.



© 2019 Ververica31

Running a Streaming Dataflow as an “Interpreter”

Ingress

& Router

Function

Dispatcher

Ingress

& Router

Function

Dispatcher

Feedback

Operator

Feedback

Operator

Egress

Egress

(keyBy) (keyBy)

(side output)

(loop)



© 2019 Ververica32

λ λ λ λ

TaskManager &

StateFun Library

(JVM process / container)

Stateful Functions Cluster

Embedded Functions – Fast, but painfully stateful



© 2019 Ververica33

Stateful Functions – Remote Functions

Cloud Native

● Can be combined with capabilities of

modern orchestration platforms

(Kubernetes, FaaS platforms, …)

“Stateless” Operation

● State access / updates is part of the

invocations / responses

● Function deployments have benefits of

stateless processes - rapid scalability,

scale-to-zero, zero-downtime upgrades

… with a runtime build for serverless architectures.

API Gateway

λλλ

event stream ingress event stream egress

(Micro)Service

Endpoint
K8s Service

f(x,s) f(x,s) f(x,s)

HTTP

Apache Flink StateFun Cluster 

(State and Messaging)

Function Execution as stateless 

Deployments, FaaS, …



© 2019 Ververica34

State and Messages

<"Cart/Kim", AddToCart("socks", 3) >

Shopping Cart Service

Inventory Service

ID: “Kim”

- msg=AddToCart("socks", 3)

- state=cart {}

cart events ingress

λ λ λ

λ λ λPartition A

Partition B



© 2019 Ververica35

State and Messages

ID: "socks“

- msg=RequestItem(3)

- state=stock { currentStock }

Partition A

Partition B

Shopping Cart Service

Inventory Service

Result State = cart {"socks“: 3}

Messages = <“inventory/socks”, RequestItem(3)>

λ λ λ

λ λ λ

cart events ingress



© 2019 Ververica36

Putting it all together: A Deployment on Kubernetes

● Deployment for Flink StateFun

Cluster (stateful part)

● One or more deployments for the 

actual functions.

● Some Log or MQ for event ingress 

and egress.

● Some file system (or object store) 

for durability

Apache Flink StateFun

Deployment

Kafka (or similar) ingresses Kafka (or similar) egresses

Service

Snapshots

NFS / HDFS / 

S3 / MinIO

Functions (App Logic) Deployment (with Horizontal Auto Scaler)



© 2019 Ververica37

DB

Application /

Business Logic

StateFun

Cluster

Application /

Business Logic

Traditional Database 

Application

Event-driven Database

Application

Input events

(ingress)

Result events

(egress)

JDBC/ODBC/REST HTTP / gRPC

“reacting”

messaging / the “boss”

Separating Compute and State, but putting Messaging differently

Input events Output events



© 2019 Ververica38

Wrapping it up



© 2019 Ververica39

Takeaways

• There is a lot of similarity between Stream Processing and Event-driven Applications. A 

loopy Stream Processor can be an interpreter for distributed event-driven applications.

• Having state and messaging tightly integrated makes a lot of things easy when building 

distributed applications.

• Integrating Compute with State is both the blessing and the curse of Stream Processing

• When separating Compute from State, let Messaging go where the State goes.

• Curious if we will see is a separate class of „event-driven databases“ in the future.



© 2019 Ververica40

Thank you for listening!

If you are interested in collaborating,

please reach out to us.

@StephanEwen – sewen@apache.org

@ApacheFlink

https://flink.apache.org/@StateFun_IO



© 2019 Ververica

Backup



© 2019 Ververica42

An Example and Demo

A Billing Application



© 2019 Ververica43

Billing Application

Subscription 

Changes

user()

• User ID

• Subscription status

• Billing interval

• …

Schedules a trigger-payment

message for the next billing date

payment()

• Processing Status

(pending, failed, 

retrying later, …)

Trigger Payment /

Payment Result

Credit Card Proc.



© 2019 Ververica44

Code Samples


