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„Graphs are everywhere“ 

G𝑟𝑎𝑝ℎ = (𝑽𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑬𝑑𝑔𝑒𝑠) 
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„Graphs are heterogeneous“ 
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„Graphs can be analyzed“ 
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„Graphs can be analyzed“ 
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„Graphs can be analyzed“ 

Assuming a social network 
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„Graphs can be analyzed“ 

Assuming a social network 
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 3. Filter communities 
4. Find common subgraph 
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„Graphs can be analyzed“ 

Assuming a social network 
• Heterogeneous data 
1. Determine subgraph 
• Apply graph transformation 
2. Find communities 
• Handle collections of graphs 
3. Filter communities 
• Aggregation, Selection 
4. Find common subgraph 
• Apply dedicated algorithm 
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„And let’s not forget...“ 
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„…Graphs are large“ 
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„A framework and research platform for efficient, 
distributed and domain independent management 

and analytics of heterogeneous graph data.“ 
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Architecture

Shared-Nothing Cluster

Distributed Storage (HDFS, HBase, Accumulo)

Distributed Execution Engine  (Apache Flink)

Extended Property Graph Model (EPGM)

Graph Analytical Language (GrALa)

Java API

I/O Analytical Operators Graph Algorithms
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Extended Property Graph Model (EPGM)

• Vertices and directed Edges 
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Extended Property Graph Model (EPGM)

• Vertices and directed Edges 
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Extended Property Graph Model (EPGM)

• Vertices and directed Edges 
• Logical Graphs 
• Identifiers 
• Type Labels 
• Properties 
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Person 
name : Alice 
born : 1984 

Band 
name : Metallica 
founded : 1981 

Person 
name : Bob 

Person 
name : Eve 

Band 
name : AC/DC 
founded : 1973 
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since : 2014 
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since : 2014 
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EPGM on Apache Flink
• DataSet  := Distributed Collection of Data Objects 
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EPGM on Apache Flink
• DataSet  := Distributed Collection of Data Objects 
• Transformation  := Operation on DataSets 
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EPGM on Apache Flink
• DataSet  := Distributed Collection of Data Objects 
• Transformation  := Operation on DataSets 
• Flink Programm := Composition of Transformations 
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Graph Representation
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Graph Representation

Id Label Properties 
1 Community {interest:Heavy Metal} 
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Graph Representation

Id Label Properties 
1 Community {interest:Heavy Metal} 

2 Community {interest:Hard Rock} 

Id Label Properties Graphs 
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Graph Representation

Id Label Properties 
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EPGM Operators
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Operator Implementation
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Operator Implementation
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5  // input: firstGraph (G[1]), secondGraph (G[2]) 
 
 1: DataSet<GradoopId> graphId = secondGraph.getGraphHead() 
 2: .map(new Id<G>()); 
 3:  
 4: DataSet<V> newVertices = firstGraph.getVertices() 
 5:  .filter(new NotInGraphBroadCast<V>()) 
 6: .withBroadcastSet(graphId, GRAPH_ID); 
 7: 
 8: DataSet<E> newEdges = firstGraph.getEdges() 
 9:  .filter(new NotInGraphBroadCast<E>()) 
10: .withBroadcastSet(graphId, GRAPH_ID) 
11: .join(newVertices) 
12: .where(new SourceId<E>().equalTo(new Id<V>()) 
13: .with(new LeftSide<E, V>()) 
14: .join(newVertices) 
15: .where(new TargetId<E>().equalTo(new Id<V>()) 
16: .with(new LeftSide<E, V>()); 

Exclusion 
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Practical Tasks
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Lesson 1: Subgraph (I)
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Lesson 1: Subgraph (II)
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Lesson 1: Subgraph (III)

A

B

A

A

B

  V 

A

vertex induced
A

A

A



  
46Department of Computer Science | Database Group

GRADOOP TUTORIAL | BOSS’20 Workshop @ VLDB 2020

Lesson 1: Subgraph (IV)

A

B

A

A

B

edge induced

  E 

A

B
A



  
47Department of Computer Science | Database Group

GRADOOP TUTORIAL | BOSS’20 Workshop @ VLDB 2020

Lesson 1: Subgraph (V)
● Extracts a subgraph by applying filter conditions to vertices and edges

– myGraph.subgraph(vertexFilter, edgeFilter)

● Vertex- and Edge-induced filtering supported
– myGraph.vertexInducedSubgraph(vertexFilter)

● Pre-defined filters including logical operators AND, OR and NOT
– new And<>(new ByProperty<>("name"), new LabelIsIn(“person”, “post”))

● User-defined filters including lambda expressions
– myGraph.subgraph(v -> true, e -> e.getLabel().equals("knows"))
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Lesson 1: Subgraph (VI)

Now it’s your turn!

● Task 1 – Filter by label

– Create a subgraph that contains ‘person’ vertices and ‘knows’ edges only.

● Task 2 – Logical operators

– Get universities and persons that used the browser Firefox.

– Include all relationships between these vertices.

● Task 3 – User-defined filter

– Some edge types have a ‘creationDate’ property. Get all edges that contain this 
property and are crated in the period [2012-01-01 00:00 , 2012-01-05 00:00) by 
using a user-defined edge filter function.

– Only the source and target vertices of these edges should be included.

– Optional: Use parameters (by adding a constructor) to define the lower and upper 
bound for the condition.
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Lesson 2: Grouping (I)

A
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Config:
Group vertices by label.
Group edges by label.
Count vertices.
Count edges.
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B

count: 2

count: 3

count: 2

count: 1
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Lesson 2: Grouping (II)
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Config:
Group all vertices.
Group edges by label.
Count vertices.
Count edges.

count: 5

count: 3

count: 4
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Lesson 2: Grouping (III)

A
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Config:
Group vertices by label and city.
Group all edges.
Count vertices.
Count edges.

city: NYC

city: NYC

city: WA

A
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city: NULL
count: 2

city: WA
count: 1

count: 4

count: 3
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city: NYC
count: 2
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Lesson 2: Grouping (III)

A

B

A

A

B

Config:
Group vertices by label and city.
Group all edges.
Count vertices.
Count edges.

city: NYC

city: NYC

city: WA

A

B

city: NULL
count: 2

city: WA
count: 1

count: 4

count: 3

A

city: NYC
count: 2

myGraph.callForGraph(
  new KeyedGrouping<>(
    Arrays.asList(GroupingKeys.label(), GroupingKeys.property(“city”)), // V grouping keys
    Arrays.asList(new Count()),  // V aggregates
    null,  // E grouping keys
    Arrays.asList(new Count())  // E aggregates
));
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Lesson 2: Grouping (IV)
● Structural grouping based on key functions

● Aggregations per group by aggregate functions

● Key function: Mapping from Vertex/Edge to grouping value 

– GroupingKeys.label() returns the label of the element

– GroupingKeys.property(‘name’) returns the value of the property 
‘name’ or NULL, if there is no property ‘name’

● Aggregate functions: compute aggregated property values

– e.g., new Count(‘cnt’) counts the number of grouped elements, 
creates a property ‘cnt’ on the grouped element
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Lesson 2: Grouping (V)
Now it’s your turn!

● Task 1 – Schema graph

– Create a schema graph by grouping vertices and edges by the label.

– How many vertices and edges exist per label?

● Task 2 – Attributed grouping

– How many males and females are there? What is the average age per gender?

– How many males know women and vice versa?

– How many male and female people study at universities per class year?

● Task 3 – User-defined key function

– How many people are born at the same weekday (Mon – Sun)?

● You have to create a UDF that extracts the day from the property ‘birthday’.

– How old is the youngest and oldest person in the group?

– How many know each other from these groups?
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Lesson 3: Pattern Matching (I)

„Which two clan leaders hate each 
other and one of them knows Frodo 

over one to ten hops?“
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Lesson 3: Pattern Matching (II)

Cypher
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Lesson 3: Pattern Matching (III)

Graph Definition Language 
 (GDL)

GraphCollection collection = graph.query(‘ MATCH (c1:Clan)<-[:leaderOf]-(o1:Orc),
   (o1)-[:hates]->(o2:orc), 
   (o2)-[:leaderOf]->(c2:Clan),
   (o2)-[:knows*1..10]->(h:Hobbit),
   WHERE NOT (c1 = c2 OR o1 = o2)

    AND h.name =”Frodo Baggins”’,
   construct, statistics);
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Lesson 3: Pattern Matching (IV)

Parsing Execution

c1

o2 h

c2

o1

(c1 != c2) AND (o1 != o2) 
AND (h.name = Frodo Baggins)

=> 23

=> 42

=> 84
=> 123
=> 456
=> 789

0

3 4

1

2

0

3 5

1

2 4

0

3 6

1

2 4

0

3 6

1

2

4

7

Planning

graph.query(‘MATCH (c1:Clan)<-[:leaderOf]-(o1:Orc),
(o1)-[:hates]->(o2:orc), 

 (o2)-[:leaderOf]->(c2:Clan),
(o2)-[:knows*1..10]->(h:Hobbit),

   Where NOT (c1 = c2 OR o1 = o2)
         AND h.name =”Frodo Baggins”’,
   construct, statistics);

ANTLR
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Lesson 3: Pattern Matching (V)
Now it’s your turn!

● Task 1 – Friendship Graph 

– Find all persons that know "John Jones".

● Task 2 – Locations of Persons and Universities 

– Find all entities that are located in Bangkok

● Task 3 – Construct Pattern

– Find all Persons that are creators of Posts located in "Senegal"

– Posts should not be in the result set (use construct pattern)

– See the documentation about construct pattern in the Gradoop Wiki!
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Lesson 4: Complex Analysis (I) 

Let’s do a more complex analysis using 
the operators of GRADOOP :) 
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Lesson 3: Pattern Matching (V)
Now it’s your turn!

● Task –  Distribution of male and females students at the given universities.

– Create a graph that show how many males and females are studying at the universities 
contained in the test data.

● Bonus – Time left? Playground!

– Play around with the operators Gradoop offers to learn more about the possibilities of distributed 
graph analytics.

– Execute different Operators and Algorithms on Logical Graphs or Graph Collections.

– Take a look at our publications about Gradoop
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Ongoing research
● Real-world graphs evolve over time

– E.g., social relationships were added, messages were sent, transactions were made

– Analyzing a graph with respect to it’s evolution requires a suitable data model and operators

– We therefore extended the EPGM to the Temporal Property Graph Model (TPGM)

● Graph-Stream analysis
– Analyze a stream of relationships for online analysis

– Graph-Stream grouping, pattern matching and visualization are already prototypes

● Entity resolution
– Integrating graph data from different sources to a knowledge graph requires complex ER tasks

– FAst Multi-source Entity Resolution system (FAMER) is part of current research and based on 
Gradoop 

● Gradoop-Service
– A graphical user interface to use Gradoop without programming skills

– Operator configuration and result visualization
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Thank you for participating

You learned:

● What Gradoop is and how it works
● How single operators work and how they can be configured
● How operators can be composed to build a more complex program
● How a Gradoop program can be executed on a cluster
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