IG DATA PEN "OURCE YSTEMS

LETh INFERNATIANAL CONFERENCE O VERY LARGE DAYA HASES

JSON Analytics
with Apache AsterixDB

Glenn Galvizo Michael Carey
lan Maxon Dmitry Lychagin
Gift Sinthong Till Westmann

() UCIRvVINE ® couchbase

APACHE

OOOOOOOOOOOOOOOOOO

What to Expect Today

Quick overview of Apache AsterixDB
Connecting to AsterixDB instances in AWS

SQL++ for basic JSON querying and manipulation

— SQL++ vs. SQL (w/hands-on exercises)

— Basic aggregation and grouping (vs. SQL)

Analytical features of SQL++ (w/hands-on exercises)

— Grouping sets, rollups, and cubes (oh my (2))
— Window functions in SQL and SQL++

« Upcoming data science support (demo)

— Python UDFs (including ScikitLearn)

AsterixDB: “One Size Fits a Bunch!”

Semistructured
data management

Wish-list:

* Able to manage data

Flexible data model

* Full query capability

* Continuous data ingestion {ASterlX@}

e Efficient and robust parallel runtime

* Cost proportional to task at hand

* Support today’s “Big Data data types” Parallel First-gen BD
DB systems analysis tools

— Parallel NoSQL DBMS

Just How Big is “Big Data”?

Cores

Main
Memory

This
IS Blg

I

Disks

AsterixDB System Overview

Load client SQL++ client Feed client
" \ /]
Client Interface
= D
52| | Asterixes
Metadata Manager SQL++ Compiler | % =
O o
(&)
b Execution
Metadata Manager ob Bxex
: = fntts 2 \
o N _ - o)
s« K} o
S8 D S
[ot e
:- | | (oS :
e ; ;
Z
[LSWITroe Manager | 5
Z 2

LSM-Based Storage Management

e Each storage partition holds a logical hash
partition of each dataset

e ADM objects (documents) themselves live in
the primary index

e Indexes are LSM-based B+ trees, R-trees, or
text indexes

e All indexes are local indexes

E E 101100
. Primary Key Index . A A

Secondary Index A A A

on Name

Secondary Index | .
; on Zipcode ; A

.................................

__

The home for
our application
(like a database)

\

Collection of

AsterixDB DDL B

CREATE DATAVERSE ShopALot;
USE ShopALot;

CREATE TYPE UsersType AS {

s

user_id: string,
email: string?,
name: {
first: string,
last: string
I
phones: [{
kind: string,
number: string

H1?

/

CREATE DATASET Users(UsersType)
PRIMARY KEY user id;

INSERT INTO Users (

"user_id": "useree7",
"email": "jamesbond@gmail.com",
"name": {"first": "James",

"last": "Bond"},
"phones": [{"kind": "MOBILE",
"number": "007-123-4567"}]

1)
A valid shopper
Shopper object instance
data
description
(largely optional)

AsterixDB DDL Alternatives

CREATE TYPE UsersType AS { CREATE TYPE UsersType AS {
user_id: string user_id: UUID
}s }s
CREATE DATASET Users(UsersType) CREATE DATASET Users(UsersType)
PRIMARY KEY user_id; PRIMARY KEY user_id AUTOGENERATED;
INSERT INTO Users (INSERT INTO Users (The system will
"user id": "usere@7", { % add the user_id
"email": "jamesbond@gmail.com", "email": "jamesbond@gmail.com",
"name": {"first": "James", "name": {"first": "James",
"last": "Bond"}, "last": "Bond"},
"phones": [{"kind": "MOBILE", "phones": [{"kind": "MOBILE",
"number": "007-123-4567"}] "number": "007-123-4567"}]

1) 1)

AsterixDB DDL (ShopALot)

CREATE TYPE StoresType AS { CREATE TYPE ProductsType AS {
store_id: string, product_id: string,
name: string, category: string,
address: { name: string,
city: string, description: string
street: string,
state: string, }s
zip_code: integer
})
phone: string,
categories: [string] CREATE DATASET Products(ProductsType)
}s PRIMARY KEY product _id;

CREATE DATASET Stores(StoresType)
PRIMARY KEY store_id;

AsterixDB DDL (ShopALot)

CREATE TYPE OrdersType AS {
order_id: string,
user_id: string,
store_id: string,
total price: float,
time_placed: datetime,
pickup_time: datetime?,
time fulfilled: datetime?,
items: [{

item_id: string,
gty: integer,
selling price: float,
product_id: string
}]
¥

CREATE DATASET Orders(OrdersType)
PRIMARY KEY order_id;

CREATE TYPE StockedByType AS {
product _id: string,
store_id: string,
gty: integer

}s

CREATE DATASET StockedBy(StockedByType)
PRIMARY KEY product_id, store id;

10

Example Data (ShopALot)

order_id: "@0DTQ",

user_id: "KJD6S",

store_id: "P4TYX",

total_price: 68.84,

time_placed: "2020-05-22T16:16:13.000Z",

time_fulfilled: "2020-05-22T19:53:37.0007" , <=
- items: [

=
item_id: "37X45",
qty: 8,
selling_price: 7.37,
product_id: "P4XL5"
},
=1
item_id: "SAB4K",
qty: 2,
selling_price: 4.94,
product_id: "ZQLZ0"
}

order_id: "ACCVI",

user_id: "YN31W",

store_id: "QTB4W",

total_price: 37.5,

time_placed: "2020-08-31T12:35:07.000Z",
pickup_time: "2020-08-31T15:47:48.0007", <@

- items: [

=
item_id: "@3SOB",
qty: 5,
selling_price: 7.5,
product_id: "SSYOY"

11

Let’s Give lta Try ...

ASter'I x@ Open source of

Query

SELECT VALUE o
FROM Orders o
LIMIT 10;

Select Options Clear Query

Documentation of

Query Language:
SQL++ v

Output Format:
JSON (formatted) v

Plan Format:
JSON v

Wrap results in outer array
([0 Print parsed expressions
(J Print rewritten expressions
(J Printlogical plan
([0 Print optimized logical plan
([Print Hyracks job

Execute query

Output
Results:

order_id: "@049X",
user_id: "F1AJZ",
store_id: "U21FB",
total_price: 3.26,

time_placed: "2019-09-30T05:20:34.000Z",
time_fulfilled: "2019-09-30707:43:18.000Z",

items: [
{
item_id: "TNT@S",
qty: 2,
selling_price: 1.63,
product_id: "GMGO5"

order_id: "@@5SN",
user_id: "UB1BJ",
store_id: "GVFW",
total_price: 215.43,

time_placed: "2020-03-31T00:43:09.000Z",

time_fulfilled: "2020-03-31T06:18
- items: [

=4
item_id: "P5CW",
qty: 7,
selling_price: 8.35,
product_id: "GECVS"

item_id: "3vD93",
qty: 8,
selling_price: 10.31,
product_id: "W1AXT"

item_id: "FZB9X",

qty: 4,

selling_price: 7.99,

product_id: "UG761"
1,

:43.00072",

12

What to Expect Today

Quick overview of Apache AsterixDB
Connecting to AsterixDB instances in AWS

SQL++ for basic JSON querying and manipulation

— SQL++ vs. SQL (w/hands-on exercises)

— Basic aggregation and grouping (vs. SQL)

Analytical features of SQL++ (w/hands-on exercises)

— Grouping sets, rollups, and cubes (oh my (2))
— Window functions in SQL and SQL++

« Upcoming data science support (demo)

— Python UDFs (including ScikitLearn)

13

Connecting to AsterixDB

e Visit https://tujun.ga/roundrobin.php

* You will be redirected to an AsterixDB
instance with all data for the tutorial
preloaded and indexes created

* Feel free to give the instance a query, like:

USE ShopALot;
SELECT VALUE o

FROM Orders o
LIMIT 10;

14

https://tujun.ga/roundrobin.php

What to Expect Today

Quick overview of Apache AsterixDB
Connecting to AsterixDB instances in AWS

SQL++ for basic JSON querying and manipulation

— SQL++ vs. SQL (w/hands-on exercises)

— Basic aggregation and grouping (vs. SQL)

Analytical features of SQL++ (w/hands-on exercises)

— Grouping sets, rollups, and cubes (oh my (2))
— Window functions in SQL and SQL++

« Upcoming data science support (demo)

— Python UDFs (including ScikitLearn)

15

What to Expect Today

Quick overview of Apache AsterixDB
Connecting to AsterixDB instances in AWS

SQL++ for basic JSON querying and manipulation

— SQL++ vs. SQL (w/hands-on exercises)

— Basic aggregation and grouping (vs. SQL)

Analytical features of SQL++ (w/hands-on exercises)

— Grouping sets, rollups, and cubes (oh my (2))
— Window functions in SQL and SQL++

« Upcoming data science support (demo)

— Python UDFs (including ScikitLearn)

16

Just Like SQL...

SELECT user_id, email [
FROM Users {
WHERE email LIKE "%gmail.com" user_id: "@@1PR",
LIMIT 3; email: "gonzalezjennifer42787@gmail.com"
}s
{
user_id: "©07GA",
email: "cou704@gmail.com”
}s
{
user_id: "©07GQ",
email: "kri59334@gmail.com"
}
]

17

Just Like SQL...

SELECT user_id, email [
FROM Users {
WHERE email LIKE "%gmail.com” "email": "thomas89979@hotmail.com",
LIMIT 3; "time_placed": "2020-06-19T11:23:56.000Z"
}s
. . {
SELECT u.email, o.time_placed "email": "kirk.ter478@gmail.com",
FROM Users u, Orders o "time_placed": "2020-07-01T04:08:55.000Z"
WHERE u.user_id = o.user_id Y,
AND o.total price > 200 {
ORDER BY o.total price DESC "email": "gonzalez855@yahoo.com",
LIMIT 3;

"time_placed": "2020-02-15T03:48:09.000Z"

18

Just Like SQL...

SELECT user_id, email

FROM Users

WHERE email LIKE "%gmail.com"

LIMIT 3;

SELECT u.email, o.time_placed SELECT u.email, o.time_placed

FROM Users u, Orders o FROM Users u JOIN Orders o

WHERE u.user_id = o.user_id ON u.user_id = o.user_id
AND o.total_price > 200 WHERE o.total_price > 200

ORDER BY o.total price DESC ORDER BY o.total_price DESC

LIMIT 3; LIMIT 3;

19

Just Like SQL...

SELECT user_id, email [
FROM Users { "store_id": "1RMXY",
WHERE email LIKE "%gmail.com" "ent": 121
LIMIT 3; 3,
{ "store_id": "2TM62",
"cnt": 120
SELECT u.email, o.time_placed 3,
FROM Users u, Orders o { "store_id": "70GOX",
WHERE u.user_id = o.user_id "ent": 112
AND o.total price > 200 }
ORDER BY o.total price DESC]
LIMIT 3;

SELECT store_id, count(*) AS cnt
FROM Orders

GROUP BY store_id

HAVING count(*) > ©

ORDER BY cnt DESC

LIMIT 3;

20

... Almost!

SELECT email, time_placed

FROM Users, Orders

WHERE Users.user_id = Orders.user_id
AND total price > 200

ORDER BY total_price DESC

LIMIT 3;

ASX1074: Cannot resolve ambiguous alias
reference for identifier total_price
(in line 6, at column 7)
[CompilationException]

21

... Almost]!

SELECT email, time placed [
FROM Users, Orders {
WHERE Users.user_id = Orders.user_id "email": "thomas89979@hotmail.com",
AND total_price > 200 "time_placed": "2020-06-19T11:23:56.000Z"
ORDER BY total price DESC Y,
LIMIT 3; {

"email": "kirk.ter478@gmail.com",

SELECT u.email, o.time_placed "time_placed": "2020-87-81T04:08:55.000Z"

FROM Users u, Orders o Y,

WHERE u.user_id = o.user_id {
AND o.total price > 200

ORDER BY o.total price DESC

LIMIT 3; }

"email": "gonzalez855@yahoo.com",
"time_placed": "2020-02-15T03:48:09.000Z"

22

... Almost]!

SELECT u.email, o.time placed

FROM Users, Orders

WHERE Users.user_id = Orders.user_id
AND total price > 200

ORDER BY total price DESC

LIMIT 3;

SELECT u.email, o.time_placed

FROM Users u, Orders o

WHERE u.user_id = o.user_id
AND o.total price > 200

ORDER BY o.total price DESC

LIMIT 3;

SELECT *

FROM Users u, Orders o
WHERE u.user_id = o.user_id
AND o.total price > 200
ORDER BY o.total price DESC

LIMIT 3;

ll: {

"user_id": "XCPVZ",

"email": "thomas89979@hotmail.com",
"name": { "first": "Christine",

"last": "Thomas" },

"phone": [

{ "type": "MOBILE",
“"number": "001-931-747-6904x197" }
]
¥

"
"order_id": "G6BT1",

"user_id": "XCPVZ",

"store id": "XGK64",

"total price": 716.8,

"time placed": "2020-06-19T11:23:56.000Z",
"time_fulfilled": "2020-06-19T17:22:35.000Z"

"items": [
{ item_id: "CWSP9",
"qty": 10,
"selling price": 71.68,
product_id: "Xe4e1i" }

}s

23

SELECT VALUE product_id
FROM StockedBy
WHERE store_id = "C4N2L";

Added VALUE

"T1P23J",
"TIHLQ",
"MUFUS"

24

Added VALUE

SELECT VALUE product_id [
FROM StockedBy {
WHERE store_id = "C4N2L"; "StoreName": "Sheetz",
"Quantity": 46
SELECT VALUE { },
"StoreName": s.name, {
"Quantity": sb.qty "StoreName": "Sheetz",
} "Quantity": 38
FROM StockedBy sb, Stores s 1,
WHERE sb.store_id = s.store_id {
AND sb.store id = "C4N2L"; "StoreName": "Sheetz",
"Quantity": 34
}
]

25

Added VALUE

SELECT VALUE product_id
FROM StockedBy
WHERE store_id = "C4N2L";

SELECT VALUE { SELECT s.name AS StoreName,
"StoreName": s.name, sb.qty AS Quantity
"Quantity": sb.qty FROM StockedBy sb, Stores s

} WHERE sb.store id = s.store id

FROM StockedBy sb, Stores s AND sb.store_id = "C4N2L";

WHERE sb.store_id = s.store_id
AND sb.store id = "C4N2L";

26

Added VALUE

SELECT VALUE product_id [

FROM StockedBy {

WHERE store_id = "C4N2L"; "StoreName": "Sheetz",

"Stocks": [

SELECT VALUE { "MUFUS",
"StoreName": s.name, "T1P23J",
"Quantity": sb.qty "TIHLQ"

}]

FROM StockedBy sb, Stores s }

WHERE sb.store id = s.store_id]

AND s.store_id = "C4N2L";

SELECT VALUE {
"StoreName": s.name,
"Stocks": (SELECT VALUE sb.product_id
FROM StockedBy sb
WHERE sb.store_id = s.store_id)
}
FROM Stores s
WHERE s.store_id = "C4N2L";

Quiz Timel

SELECT *
FROM Orders
WHERE total price =
(SELECT MAX(total price) FROM Orders);

SELECT o1.*
FROM Orders ol
WHERE ol.total price =
(SELECT MAX(02.total price) FROM Orders o02);

SELECT o1.*
FROM Orders ol
WHERE ol.total price =
(SELECT VALUE MAX(02.total price) FROM Orders);

SELECT ol1.*
FROM Orders ol
WHERE ol.total price =
(SELECT VALUE MAX(o02.total price) FROM Orders 02)[0];

Q: Which query
retrieves the orders
that have the
highest total price?

28

A

SQL Pitfalls and the Value of VALUE

SQL++ “best guesses” that
SELECT * Orders is a field of Orders

FROM Orders
WHERE total price =

(SELECT MAX(total price) FROM Orders);

Type mismatch: expected
value of type multiset
or array, but got the
value of type object (in
line 6, at column 34)
[TypeMismatchException]

29

SQL Pitfalls and the Value of VALUE

SELECT *
FROM Orders
WHERE total price =

(SELECT MAX(total price) FROM Orders);

SELECT o1.*
FROM Orders ol

Standard SQL would apply “flat
world” row/column coercion magic

WHERE ol.total price = «—

(SELECT MAX(o02.total _price) FROM Orders 02);

30

SQL Pitfalls and the Value of VALUE

SELECT * [
FROM Orders
WHERE total price =

(SELECT MAX(total price) FROM Orders);

SELECT o1.*
FROM Orders ol
WHERE ol.total price =
(SELECT MAX(02.total price) FROM Orders o02);

SELECT o01.* SQL++ SELECT statements always
FROM Orders ol return collections (not scalars)

WHERE ol.total price =4*_______—————“”'——>

(SELECT VALUE MAX(o2.total price) FROM Orders);

31

SQL Pitfalls and the Value of VALUE

SELECT * {
FROM Orders "order_id": "G6BT1",
WHERE total price = "user_id": "XCPVZ",
(SELECT MAX(total_price) FROM Orders); “store_id": "XGK64",
"total price": 716.8,
SELECT ol.* "time placed":

"2020-06-19T11:23:56.000Z",
"time_fulfilled":
"2020-06-19T17:22:35.000Z",

FROM Orders ol
WHERE ol.total price =
(SELECT MAX(o02.total price) FROM Orders 02);

"items": [
{
SELECT ol1.* "item id": "CWSP9",
FROM Orders ol "qty": 10,
WHERE ol.total price = "selling price": 71.68,
(SELECT VALUE MAX(o2.total_price) FROM Orders 02); "product_id": "Xe4e1"
}

SELECT ol.* We know the subquery returns just]
FROM Orders ol one value, so we extract it this way }

WHERE ol.total price = <—--""““-~—-__.!

(SELECT VALUE MAX(o02.total price) FROM Orders 02)[9];

32

SQL Pitfalls and the Value of VALUE

SELECT *
A FROM Orders
WHERE total price =
(SELECT MAX(total price) FROM Orders);

SELECT o1.*
B FROM Orders ol
WHERE ol.total price =
(SELECT MAX(o2.total price) FROM Orders 02);

SELECT ol1.*
C FROM Orders ol
WHERE ol.total price =
(SELECT VALUE MAX(02.total price) FROM Orders);

SELECT o1.*

(::) FROM Orders ol

WHERE ol.total price =
(SELECT VALUE MAX(o02.total price) FROM Orders 02)[0];

33

SELECT o.order_id,
o.user_id,
i.product_id AS product,
i.gty AS quantity
FROM Orders o UNNEST o.items 1
WHERE i.qty > 30;

Unnesting

"order_id":

"user_id":
"product”:

"quantity":

"order_id":

"user_id":
"product”:

"quantity":

"SIZ2R",
"3PB90",
"93NRR",

33

"SW6PI",
"8600D",
"KASQ9",

37

34

SELECT o.order_id,
o.user_id,
i.product_id AS product,
i.qty AS quantity
FROM Orders o UNNEST o.items i
WHERE i.qty > 30;

Unnesting

SELECT o.order_id,
o.user_id,
i.product_id AS product,
i.gty AS quantity

FROM Orders o, o.items 1

WHERE i.qty > 30;

35

Quantification

SELECT DISTINCT VALUE o.user_id [

FROM Orders o "FOAYZ",

WHERE SOME i IN o.items "OLRCD",
SATISFIES i.selling price >= 80.00; "GBPXS",

"RQ6FT"

Quantification

SELECT DISTINCT VALUE o.user_id [
FROM Orders o "KMK3F",
WHERE SOME i IN o.items "OE4HV",
SATISFIES i.selling price >= 80.00; "Xcpvz"

]

SELECT DISTINCT VALUE o.user_id
FROM Orders o
WHERE EVERY i IN o.items
SATISFIES i.selling price >= 70.00;

37

Quantification

SELECT DISTINCT VALUE o.user_id [
FROM Orders o "KMK3F",
WHERE SOME i IN o.items "OE4HV",
SATISFIES i.selling price >= 80.00; "XCpPvZ"

]

SELECT DISTINCT VALUE o.user_id
FROM Orders o
WHERE EVERY i IN o.items
SATISFIES i.selling price >= 70.00;

SELECT DISTINCT VALUE o.user_id
FROM Orders o
WHERE EVERY i IN o.items
SATISFIES i.selling price >= 70.00
AND ARRAY COUNT(o.items) > 0;

Quantification

SELECT DISTINCT VALUE o.user_id [
FROM Orders o {
WHERE SOME i IN o.items name": {

SATISFIES i.selling price >= 80.00; "flrsf ﬂlMarfln,
last": "Levy

SELECT DISTINCT VALUE o.user_id }’}

FROM Orders o {

WHERE EVERY i IN o.items "name": {

SATISFIES i.selling price >= 70.00; "first": "Kri",

________________________________ "last": "Gomez"
?SELECT DISTINCT VALUE o.user_id | } }
:FROM Orders o : {’
:WHERE array_count(o.items) > © : "name": {
, AND (EVERY i IN o.items ! "first": "Christine",
: SATISFIES i.selling price »>= 70.00);: "last": "Thomas"
bmmm e m s - 2 Sl }

SELECT u.name \\ ¥

FROM Users u \]

WHERE u.user_id IN (.1.);

39

Remember the Data

order_id: "@0DTQ",

user_id: "KJD6S",

store_id: "P4TYX",

total_price: 68.84,

time_placed: "2020-05-22T16:16:13.000Z",

time_fulfilled: "2020-05-22T19:53:37.0007" , <=
- items: [

=
item_id: "37X45",
qty: 8,
selling_price: 7.37,
product_id: "P4XL5"
},
=
item_id: "SAB4K",
qty: 2,
selling_price: 4.94,
product_id: "ZQLZ0"
}

order_id: "ACCVI",

user_id: "YN31W",

store_id: "QTB4W",

total_price: 37.5,

time_placed: "2020-08-31T12:35:07.000Z",

pickup_time: "2020-08-31T15:47:48.0007", <@
- items: [

= 1
item_id: "@3SOB",
qty: 85,
selling_price: 7.5,
product_id: "SSYOY"
3

40

Have | “Missed” Anything?

SELECT o.order_id, [
o.time_placed, {
o.time_fulfilled, "order_id": "ClWe4",
o.total price, "time placed": "2020-08-31T13:28:36.000Z",
o.user_id "total price": 221.28,
FROM Orders o "user_id": "HzZ7V1l"
WHERE total price > 150.00 1,
AND o.time fulfilled IS MISSING; {
"order_id": "DTW97",
"time_placed": "2020-08-31T08:00:20.000Z",
"total price": 153.41,
"user_id": "B8WJY"
}s
{
"order_id": "SWRD1",
"time placed": "2020-08-31T09:14:00.000Z",
"total_price": 190.7,
"user_id": "HOGTV"
}

Have | “Missed” Anything?

SELECT o.order_id, [
o.time_placed, {
o.time_fulfilled, "order_id": "Clwe4",
o.total price, "time_placed": "2020-08-31T13:28:36.000Z",
o.user_id "total price": 221.28,
FROM Orders o "user_id": "HzZ7Vv1"
WHERE total price > 150.00 1,
AND o.time fulfilled IS MISSING; {
"order_id": "DTW97",
"time_placed": "2020-08-31T08:00:20.000Z",
SELECT VALUE { "total price": 153.41,
"order_id": o.order_id, "user_id": "B8WJY"
"time_placed": o.time_placed, 1,
"time_fulfilled": o.time_fulfilled, {
"total price": o.total price, "order_id": "SWRD1",
"user_id": o.user_id "time placed": "2020-08-31T09:14:00.000Z",
} "total price": 190.7,
FROM Orders o "user_id": "HOGTV"
WHERE total price > 150.00 }
AND o.time_fulfilled IS MISSING;]

42

A CASE Study

SELECT VALUE {
"order_id": o.order_id,
"time_placed": o.time placed,
"time_fulfilled":

CASE
WHEN o.time_fulfilled IS MISSING
THEN "TBD"
ELSE o.time_ fulfilled
END,

"total price": o.total price,
"user_id": o.user_id

}

FROM Orders o

WHERE user_id = "QREX9"

LIMIT 3;

"time_placed": "2020-08-31T10:44:47.000Z",

"time_placed": "2020-08-16T10:19:14.000Z",

"time_fulfilled": "2020-08-16T17:44:41.000Z"

"time_placed": "2018-11-23T15:23:24.000Z",

"time_fulfilled": "2018-11-23T20:43:36.000Z"

{
"order_id": "@PSe2",
"total price": 58.63,
"user_id": "QREX9",
"time fulfilled": "TBD"

}s

{
"order_id": "9L6V5",
"total price": 7.08,
"user_id": "QREX9",

}s

{
"order_id": "HE605",
"total price": 130.08,
"user_id": "QREX9",

}

43

Lab 1: Basic 1§
SQL++ Queries "

List the first names of users that have placed orders with a total price
greater than $S500. Only return a list of strings, not objects. [19]

List the names and addresses of stores that have a stock of at least 45
products with “Wafer” in the name. [8]

List home phone numbers that start with “97” with the associated
user's id. [19]

Get the names and phone numbers of stores that are in the state
“WA” and have a category containing the substring “Personal”. [7]
Get the order id and pickup time from orders placed after 2020-08-31
at 7:30AM. If the pickup time is missing from the order, return the
order id with the string “NOT SPECIFIED”. Hint: compare the time
placed with datetime(“2020-08-31T07:30:00.000Z”). [82]

44

Lab 1: Q1 - Q2 Answers

Q1: List the first names of users that
have placed orders with a total price
greater than $500. Only return a list
of strings, not a list of objects.

SELECT VALUE U.name.first
FROM ShopALot.Users U,
ShopALot.Orders O
WHERE U.user_id = O.user_id
AND O.total_price > 500;

Q2: List the names and addresses of
stores that have a stock of at least
45 products with “Wafer” in the
name.

SELECT S.name, S.address

FROM ShopALot.Stores S,
ShopALot.StockedBy SB,
ShopALot.Products P

WHERE SB.store_id = S.store_id
AND SB.product_id = P.product_id
AND P.name LIKE "%Wafer%"
AND SB.qty > 45;

45

Lab 1: Q3 - Q4 Answers

Q3: List home phone numbers that
start with “97” with the associated
user's id.

SELECT U.user_id, UP.number
FROM ShopALot.Users U,
U.phones UP
WHERE UP.number LIKE "97%"
AND UP.kind = "HOME";

Q4: Get the names and phone
numbers of stores that are in the
state “WA” and has a category with
the substring “Personal”.

SELECT S.name, S.phone

FROM ShopALot.Stores S

WHERE S.address.state = "WA" AND
(SOME C IN S.categories SATISFIES C
LIKE "%Personal%");

46

Lab 1: Q5 Answer

Q5: Get the order id and pickup time
from orders placed after 2020-08-31
at 7:30AM. If the pickup time is
missing from the order, return the
order id with the string “NOT
SPECIFIED”.

SELECT O.order _id,
CASE (O.pickup_time IS MISSING)
WHEN TRUE THEN "NOT SPECIFIED"
ELSE O.pickup_time
END AS pickup_time

FROM ShopALot.Orders O

WHERE O.time_placed >
datetime("2020-08-30T07:30:00.000Z");

47

What to Expect Today

Quick overview of Apache AsterixDB
Connecting to AsterixDB instances in AWS

SQL++ for basic JSON querying and manipulation

— SQL++ vs. SQL (w/hands-on exercises)

— Basic aggregation and grouping (vs. SQL)

Analytical features of SQL++ (w/hands-on exercises)

— Grouping sets, rollups, and cubes (oh my (2))
— Window functions in SQL and SQL++

« Upcoming data science support (demo)

— Python UDFs (including ScikitLearn)

48

SQL Grouping and Aggregation

SELECT s.address.state, COUNT(*) AS cnt [
FROM Stores as s, Orders as o

WHERE s.store_id = o.store_id

GROUP BY s.address.state;

"state'

cnt":

"state'

cnt”:

"state'

}s
{

cnt":

"state'

}s

cnt":

I: IIAI(IIJ

28

I: IIALIIJ

546

L] : IIKYIIJ

206

I: IILAIIJ

399

49

SQL Grouping and Aggregation

SELECT s.address.state, COUNT(*) AS cnt
FROM Stores as s, Orders as o

WHERE s.store_id = o.store_id

GROUP BY s.address.state;

- 28

> 546

s.address.state S o)
StHLUS 04qrspP
AK STHLUS o4WU E6
SOHKZ3 OOQDFV
SOHKZ3 OOSVOR
AL S0HKZ3 01 25PT
S0HKZ3 02PJ4Y
... +45 more

50

SQL++ Aggregation (only)

SELECT u.email, [
ARRAY COUNT(o.items) AS order size {
FROM Users AS u, Orders AS o "email": "claire.evans@gmail.com",
WHERE u.user_id = o.user_id "order_size": 8
ORDER BY order_size DESC },
LIMIT 3; {
"email": "and82566@yahoo.com",
"order_size": 7
}s
{
"email": "Thompsonl852@hotmail.com",
"order_size": 7
}
]

51

SQL++ Aggregation (only)

SELECT u.email, [
ARRAY_COUNT(o.items) AS order_size 59.94
FROM Users AS u, Orders AS o]

WHERE u.user_id = o.user_id
ORDER BY order_size DESC
LIMIT 3;

SELECT VALUE MAX(p.list_price) Note: Field p.list_price has a few “dirty values”

FROM Products p “/////,,//”/ ("TBD", "TODQ", "expensive", "pricey")

WHERE is number(p.list price);

52

SQL++ Aggregation (only)

SELECT u.email, [
ARRAY_COUNT(o.items) AS order_size 59.94
FROM Users AS u, Orders AS o]

WHERE u.user_id = o.user_id
ORDER BY order_size DESC
LIMIT 3;

SELECT VALUE MAX(1list price)
FROM Products
WHERE is number(list price);

ARRAY_MAX (l
(SELECT VALUE 1list price
FROM Products
WHERE is_number(list_price))

)5

SQL++ Grouping (only)

SELECT s.address.state, g
FROM Stores AS s, Orders AS o
WHERE s.store_id = o.store_id

GROUP BY s.address.state GROUP AS g; " |

"order_id": "4WUE6",
"user_id": "EIGF6",

{ "store_id": "THLUS",
"state": "AK", "total_price": 25.34,
g ["time_placed": "2020-03-22T01:29:03.000Z",
{ "pickup_time": "2020-03-22T07:27:31.000Z",
s { "time_fulfilled": "2020-03-22T13:26:00.000Z",
"store_id": "THLUS", "items": [
"name": "Jackson Food Store", {
"address": { "item_id": "6TYQA",
"street": "3354 Betty Cliff", "qty": 2,
"city": "Houston", "selling price": 12.67,
"state": "AK", "product_id": "90T50"
"zip_code": "99694" }
}s]
"phone": "585.025.4631", }
"categories": [},
"Bread & Bakery",
.]
"Condiments, Spice, & Bake" },
] 54

1> 1

SQL++ Groups and Querying

FROM Stores AS s, Orders AS o

WHERE s.store_id = o.store_id This could be any query over the group!

GROUP BY s.address.state GROUP AS g (Notice that FROM came first, BTW...)
SELECT s.address.state,

(SELECT g.s.store_id, g.s.name, g.o.order_id FROM g) AS so pairs;

[
{
"state": "AK",
"so _pairs": [
{ "store_id": "THLUS", "name": "Jackson Food Store", "order_id": "4WUE6" },
{ "store_id": "THLUS", "name": "Jackson Food Store", "order_id": "61P1A" }
]
¥

{ "state": "AL",
"so_pairs": [
{ "store_id": "@HKZ3", "name": "Border Station", "order_id": "@QDFV" },
{ "store_id": "@HKZ3", "name": "Border Station", "order_id": "2PJ4Y" }

SQL Grouping and
Aggregation Explained

SELECT s.address.state, COUNT(*) AS cnt
FROM Stores as s, Orders as o

WHERE s.store_id = o.store_id

GROUP BY s.address.state;

"state'

cnt":

"state'

cnt”:

"state'

}s
{

cnt":

"state'

}s

cnt":

I: IIAI(IIJ

28

I: IIALIIJ

546

L] : IIKYIIJ

206

I: IILAIIJ

399

56

SQL Grouping and
Aggregation Explained

SELECT s.address.state, COUNT(*) AS cnt
FROM Stores as s, Orders as o

WHERE s.store _id = o.store_id

GROUP BY s.address.state;

l

SELECT s.address.state, ARRAY COUNT(g) AS cnt
FROM Stores as s, Orders as o

WHERE s.store id = o.store_id

GROUP BY s.address.state GROUP AS g;

}s

"state'

cnt”:

"state'

cnt":

"state'

cnt":

"state'

cnt":

I: IIAI(IIJ

28

I: IIALIIJ

546

L] : IIKYIIJ

206

I: IILAIIJ

399

57

Lab 2: SQL++ Grouping 4 "
and Aggregation Exercises ...

1. List the names of users that have placed

exactly 14 orders.

2. For the two most frequent store categories,
list the category itself along with the number
of stores containing that category.

3. For stores with total sales less than S400, list
the store ID and the orders associated with

this store.

58

Lab 2: Q1 - Q2 Answers

Q1: List the names of users that Q2: For the two most frequent store

have placed exactly 14 orders. categories, list the category itself
along with the number of stores
containing that category.

SELECT U.name SELECT SC, COUNT(*) AS category_count

FROM ShopALot.Users U, FROM ShopALot.Stores S, S.categories SC
ShopALot.Orders O GROUP BY SC

WHERE U.user_id = O.user_id ORDER BY COUNT(*) DESC

GROUP BY U.user _id, U.name LIMIT 2;

HAVING COUNT(*) = 14;

59

Lab 2: Q3 Answer

Q3: For stores with total sales less
than S400, list the store ID and the
orders associated with this store.

SELECT O.store_id, store_orders
FROM ShopALot.Orders O

GROUP BY O.store_id

GROUP AS store_orders

HAVING SUM(O.total_price) < 400;

60

What to Expect Today

Quick overview of Apache AsterixDB
Connecting to AsterixDB instances in AWS

SQL++ for basic JSON querying and manipulation

— SQL++ vs. SQL (w/hands-on exercises)

— Basic aggregation and grouping (vs. SQL)

Analytical features of SQL++ (w/hands-on exercises)

— Grouping sets, rollups, and cubes (oh my (2))
— Window functions in SQL and SQL++

« Upcoming data science support (demo)

— Python UDFs (including ScikitLearn)

61

Beyond Grouped Aggregation

* Like standard SQL, SQL++ supports a collection of

more advanced analytical clauses

— Various ways to group data for aggregation
« ROLLUP
* CUBE
* GROUPING SETS

— Functions to aggregate “windows” of (ordered) data
 ORDER BY
* PARTITION BY
« ROWS FOLLOWING/PROCEEDING, etc.

e Let’s have a look...

62

What to Expect Today

Quick overview of Apache AsterixDB
Connecting to AsterixDB instances in AWS

SQL++ for basic JSON querying and manipulation

— SQL++ vs. SQL (w/hands-on exercises)

— Basic aggregation and grouping (vs. SQL)

Analytical features of SQL++ (w/hands-on exercises)

— Grouping sets, rollups, and cubes (oh my &)
— Window functions in SQL and SQL++

« Upcoming data science support (demo)

— Python UDFs (including ScikitLearn)

63

ROLL Call!

SELECT s.address.state, s.address.city, GROUP BY ROLLUP
COUNT(s.store_id) AS stores (x,y,2)
FROM Stores s -

GROUP BY GROUPING SET
WHERE s.address.state LIKE "C%" ou ou SETS

(%y,2), (x,y), (x), ()

GROUP BY ROLLUP(s.address.state, s.address.city) _
ORDER BY s.address.state, s.address.city; “\\\“‘~\\\~ SELECT ... GROUP BY x,y,z

UNION ALL
[SELECT ... GROUP BY x,y
"state": null, "city": null, "stores": 25 } UNION ALL
"state": "CA", "city": null, "stores": 23 } SELECT ... GROUP BY x
UNION ALL

"state": "CA", "city": "Acton", "stores": 1 }

. . SELECT ... GROUP BY ()
"state": "CA", "city": "Anaheim", "stores": 1 }

"state": "CA", "city": "Arroyo Grande", "stores": 1 }
"state": "CA", "city": "Bridgeport", "stores": 1 }
"state": "CA", "city": "Cambria", "stores": 1 }
"state": "CA", ... }

P e T

{ "state": "CO", "city": null, "stores": 2 }
"state": "CO", "city": "Empire", "stores": 1 }
{ "state": "CO", "city": "Ridgway", "stores": 1 }

~~

64

Be a CUBEIst

SELECT s.address.state, year,
ROUND(SUM(o.total price)) AS sales

FROM Orders o JOIN Stores s ON o.store_id = s.store_id

LET year = GET_YEAR(DATETIME(o.time_placed))

WHERE s.address.state LIKE "C%"

GROUP BY CUBE(s.address.state, year)

ORDER BY s.address.state, year;

[

{ "state": null, "year": null, "sales": 69094.0 },
{ "state": null, "year": 2018, "sales": 8038.0 },
{ "state": null, "year": 2019, "sales": 17980.0 },
{ "state": null, "year": 2020, "sales": 43077.0 },
{ "state": "CA", "year": null, "sales": 64312.0 },
{ "state": "CA", "year": 2018, "sales": 7455.0 },
{ "state": "CA", "year": 2019, "sales": 16548.0 },
{ "state": "CA", "year": 2020, "sales": 40309.0 },
{ "state": "CO", "year": null, "sales": 4782.0 },
{ "state": "CO", "year": 2018, "sales": 583.0 },

{ "state": "CO", "year": 2019, "sales": 1431.0 },
{ "state": "CO", "year": 2020, "sales": 2768.0 },

GROUP BY CUBE (x,y,z)

GROUP BY GROUPING SETS
(x,y,2),
(x,y), (x,2), (v,2),
(x), (y), (2),
()

SELECT ... GROUP BY x,y,z
UNION ALL

SELECT ... GROUP BY x,y
UNION ALL

SELECT ... GROUP BY x,z
UNION ALL

SELECT ... GROUP BY y,z
UNION ALL

SELECT ... GROUP BY x
UNION ALL

SELECT ... GROUP BY y
UNION ALL

SELECT ... GROUP BY z
UNION ALL

SELECT ... GROUP BY ()

65

What to Expect Today

Quick overview of Apache AsterixDB
Connecting to AsterixDB instances in AWS

SQL++ for basic JSON querying and manipulation
— SQL++ vs. SQL (w/hands-on exercises)
—Basic aggregation and grouping (vs. SQL)
Analytical features of SQL++ (w/hands-on exercises)

— Grouping sets, rollups, and cubes (oh my (2))
— Window functions in SQL and SQL++

« Upcoming data science support (demo)

— Python UDFs (including ScikitLearn)

66

P N N T P S S S S

Let’s Do Windows

SELECT category, product_id, list price,
RANK() OVER (ORDER BY list_price DESC)
AS rank

FROM Products

WHERE is number(list_price)

ORDER BY rank;

™~

WIN_FUNC() OVER(ORDER BY x)

Evaluation steps:
1. Order the whole input tuple
stream by x
2. Compute window function
for each tuple

"category": "Meat & Seafood", "product id": "Xe4e01", "rank": 1, "list price": 59.94 },
"category": "Meat & Seafood", "product id": "HW481", "rank": 2, "list price": 34.97 },
"category": "Baby Care", "product_id": "Y7KB7", "rank": 3, "list price": 32.99 },

"category": "Pet Care", "product_id": "4S9Ul", "rank": 4, "list price": 28.29 },

"category": "Personal Care & Health", "product id": "37YQC", "rank": 5, "list price": 26.99 },
"category": "Pet Care", "product_ id": "3QQEP", "rank": 5, "list price": 26.99 },

"category": "Baby Care", "product_id": "84G67", "rank": 5, "list price": 26.99 },

"category": "Baby Care", "product_id": "9S30I", "rank": 5, "list price": 26.99 },

"category": "Personal Care & Health", "product id": "YE4GB", "rank": 5, "list price": 26.99 },
"category": "Pet Care", "product_id": "8IDLX", "rank": 10, "list price": 26.29 },

67

Partitioned Windows

SELECT category, product_id, list price, WIN_FUNC() OVER(PARTITION BY x

RANK() OVER (PARTITION BY category ORDERBY y)

ORDER BY 1list price DESC) .
AS rank ‘\\\ Evaluation steps:
1. Partition tuple stream by x

FROM Products 2. Order tuples within each partition by y
WHERE is number(list price) 3. Compute window function for each
ORDER BY rank, category; tuple within each partition

[

{ "category": "Baby Care", "product_id": "Y7KB7", "rank": 1, "list price": 32.99 },

{ "category": "Beverages", "product_id": "Ye6YC8", "rank": 1, "list price": 22.99 },

{ "category": "Beverages", "product_id": "8VPBX", "rank": 1, "list _price": 22.99 },

{ "category": "Beverages", "product_id": "W2KMW", "rank": 1, "list price": 22.99 },

{ "category": "Bread & Bakery", "product_id": "MUFUS", "rank": 1, "list price": 6.49 },

{ "category": "Breakfast & Cereal", "product_id": "ALCBL", "rank": 1, "list price": 10.99 },
{ "category": "Baby Care", "product_id": "84G67", "rank": 2, "list price": 26.99 },

{ "category": "Baby Care", "product_id": "9S30I", "rank": 2, "list price": 26.99 },

{ "category": "Bread & Bakery", "product_id": "Ge83v", "rank": 2, "list price": 5.99 },

68

Partitioned Windows (cont.)

WITH ranked AS (

SELECT category, product_id, list price, RANK() OVER (
PARTITION BY category ORDER BY list price DESC) AS rank

FROM Products
WHERE is number(list _price)

)

SELECT ranked.*

FROM ranked

WHERE rank <= 3

ORDER BY rank, category;

[
{ "category": "Baby Care", "product_id": "Y7KB7", "rank": 1, "list price": 32.99 },
{ "category": "Beverages", "product_id": "Y6YC8", "rank": 1, "list price": 22.99 },
{ "category": "Beverages", "product_id": "8VPBX", "rank": 1, "list price": 22.99 },
{ "category": "Beverages", "product_id": "W2KMW", "rank": 1, "list price": 22.99 },
{ "category": "Bread & Bakery", "product_id": "MUFUS", "rank": 1, "list price": 6.49 },
{ "category": "Baby Care", "product_id": "84G67", "rank": 2, "list price": 26.99 },
{ "category": "Baby Care", "product_id": "9S30I", "rank": 2, "list price": 26.99 },

{ "category": "Bread & Bakery", "product_id": "Ge@83V", "rank": 2, "list price": 5.99 },

69

Running Aggregates

SELECT year, month, monthly sales,
SUM(monthly sales) OVER(ORDER BY month)
AS running total
FROM Orders o
LET year = GET_YEAR(DATETIME(o.time placed)),
month = GET_MONTH(DATETIME(o.time placed))
GROUP BY year, month
LET monthly sales = ROUND(SUM(o.total price))
HAVING year = 2020
ORDER BY month;

"year": 2020, "month":
"year": 2020, "month":
"year": 2020, "month":
"year": 2020, "month":
"year": 2020, "month":
"year": 2020, "month":
"year": 2020, "month":
"year": 2020, "month":

"monthly sales":
"monthly sales":
"monthly sales":
"monthly sales":
"monthly sales":
"monthly sales":
"monthly sales":
"monthly sales":

- -

-

- - -

0O N oYU A~ WDN PR
-

-

R e e T T T e N P SN

AGG_FUNC() OVER(PARTITION BY x
ORDER BYy
frame_spec?)
Evaluation steps:
1. Partition tuple stream by x
2. Order tuples within each partition by y
3. Determine which tuples belong to the
aggregation frame for each tuple within
each partition
4. Compute aggregate function over each
frame

Default frame_spec is RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW

37767.0, "running total": 37767.0 }
34630.0, "running total": 72397.0 }
72565.0, "running total": 144962.0 }
92997.0, "running total": 237959.0 }
95525.0, "running total": 333484.0 }
97771.0, "running total": 431255.0 }

106498.0, "running total": 537753.0 }

103911.09, "running total": 641664.0 }
70

More Windows

SELECT q, year, q_sales, g_sales prev_year, q_sales_growth_pct
FROM (

SELECT g, year, ROUND(SUM(o.total price)) AS q_sales LAG(x) OVER(PARTITION BY'y,
FROM Orders o ORDERBY z)

LET year = GET_YEAR(DATETIME(o.time placed)), Return previous value of x within

q = GET_MONTH(DATETIME(o.time_placed)) DIV 4 the partition (or NULL if there's no
GROUP BY year, ¢ previous tuple)
) AS gs

LET g_sales prev_year = LAG(q_sales) OVER (PARTITION BY g ORDER BY year),
g_sales growth = (q_sales - gq_sales prev_year) / q_sales prev_year,
g_sales_growth_pct = TO _STRING(TO BIGINT(100 * g _sales_growth)) || "%"

ORDER BY q, year;

{ "q": 0, "year": 2018, "q_sales": 7096.0, "gq_sales prev_year": null,
"g_sales_growth_pct": null }

{ "q": @0, "year": 2019, "q_sales": 56641.0, "q sales prev_year": 7096.0,
"g_sales_growth_pct": "698%" }

{ "q": @, "year": 2020, "q_sales": 144963.0, "q sales prev_year": 56641.0,
"g_sales_growth_pct": "155%" }

{"g": 1 ...}, ... {"g"r 2 ...}, ... 7t

Lab 3: Advanced Analytics

Q1

Create a report showing sales by product category
each year. It should also include a total of sales for
each category (over all years) and a grand total of
all sales (all categories, all years). The report rows
should be ordered by category and by year within

each category.
Hint: use datasets: Orders, Products
Hint: to get order year use
GET_YEAR(DATETIME(o.time_placed))

{ "category":
{ "category":
{ "category":
{ "category":
{ "category":
{ "category":
{ "category":
{ "category":
{ "category":

null, "year": null, "sales": ... }
null, "sales": ...}

"Baby Care", "year":

"Baby Care", "year":

"Baby Care", "year":
"Baby Care", "year":

"Beverages", "year":

"Beverages", "year":

"Beverages", "year":

"Beverages", "year":

2018, "sales": ...
2019, "sales": ..
2020, "sales": ...
null, "sales": ..
2018, "sales": ...

-}

2019, "sales": ..

2020, "sales": ...

}
-}
}

}
-}
}

10 rmin

Q2
Create a report showing monthly sales and

their running totals of products in the
"Beverages" category in California in 2020

Hint: use datasets: Orders, Products, Stores

Hint: to get order month use
GET_MONTH(DATETIME(o.time_placed))

{ "month": 1, "sales": ..., "running_total": ... }
{ "month": 2, "sales": ..., "running_total": ... }
{"month": 3, "sales": ..., "running_total": ... }
{"month": 4, "sales": ..., "running_total": ... }
{"month": 5, "sales": ..., "running_total": ... }
{ "month": 6, "sales": ..., "running_total": ... }
{"month": 7, "sales": ..., "running_total": ... }
{ "month": 8, "sales": ..., "running_total": ... }

Ny
N2

Lab 3: Q1

Q1

Create a report showing sales by product
category for each year. It should also
include a summary of sales in each category
for all years and a grand total of all sales.
The report rows should be ordered by
category and by year within each category.

SELECT category, year, sales
FROM Orders AS o
UNNEST o.items AS i
JOIN Products AS p
ON i.product_id = p.product _id
LET year =
GET_YEAR(DATETIME(o.time_placed))
GROUP BY ROLLUP(p.category, year)
LET sales =
ROUND(SUM(i.qty * i.selling_price))
ORDER BY category, year;

- Q2 Answers

Q2

Create a report showing monthly sales and their
running totals of products in "Beverages" category in
California in 2020

SELECT month, sales,
SUM(sales) OVER(ORDER BY month)
AS running_total
FROM Orders AS o
UNNEST o.items AS i
JOIN Products AS p
ON i.product_id = p.product _id
JOIN Stores AS s
ON o.store_id = s.store id
LET year = GET_YEAR(DATETIME(o.time_placed)),
month = GET_MONTH(DATETIME(o.time_placed))
WHERE year = 2020
AND s.address.state = "CA"
AND p.category="Beverages"
GROUP BY month
LET sales = ROUND(SUM(i.qty * i.selling_price));

N
w

What to Expect Today

Quick overview of Apache AsterixDB

Connecting to AsterixDB instances in AWS
SQL++ for basic JSON querying and manipulation
— SQL++ vs. SQL (w/hands-on exercises)

Analytical features of SQL++ (w/hands-on exercises)
— Aggregation and grouping (vs. SQL)

— Grouping sets, rollups, and cubes (oh my (Z))

— Window functions in SQL and SQL++

« Upcoming data science support (demo)

— Python UDFs (including ScikitLearn)

74

AsterixDB and ML-Based Analytics

Typical small data analysis

| Data‘

€

- =g d
Data
Scientist
; ’ Results g

75

AsterixDB and ML-Based Analytics

Typical big data analysis

ﬂﬂﬂﬂﬂ

PySe ork AriUAMLPlYDhESB | G __________

=

(heady * Errors when translating algorithms
Data * Days or weeks per iteration

Scientist

103 - Lo vo- - .
mmmmmmm

' Results

76

AsterixDB and ML-Based Analytics

Our solution

(J\Z‘ R B | Gi
System Engineer
o Mth
d— ™ ==l
Data j

Scientist []
L | Results g

77

AsterixDB and ML-Based Analytics

Our solution

=
1 UD[=

UDF EI] ,J AST[]RAEE
aﬁ u,_:"P)'thon- — l

Data
Scientist

Asterixes
L Results g

78

What to Expect Today

Quick overview of Apache AsterixDB

Connecting to AsterixDB instances in AWS
SQL++ for basic JSON querying and manipulation
— SQL++ vs. SQL (w/hands-on exercises)

Analytical features of SQL++ (w/hands-on exercises)
— Aggregation and grouping (vs. SQL)

— Grouping sets, rollups, and cubes (oh my (Z))

— Window functions in SQL and SQL++

« Upcoming data science support (demo)

— Python UDFs (including ScikitLearn)

79

AsterixDB Python UDF Demo

Training data: https://www.kaggle.com/crowdflower/twitter-airline-sentiment

tweet_id airline_ airline_: a4 _confid airline
0 570306133677760513 neutral 1.0000 NaN NaN |, Virgin
’ America
1 570301130888122368 iti Virgin
positive 0.3486 NaN 0.0000 Ameri
erica
2 570301083672813571 neutral 0.6837 NaN NaN , Virgin
’ America
< . Virgin
3 570301031407624196 negative 1.0000 Bad Flight 07033 , oo
erica
4 570300817074462722 negative 1.0000 Can't Tell 1.0000 , Virgin
’ : America

O learn

Sentiment Classifier with Scikit-Learn

3 sentiments: Positive,

Negative
sentiment.py |

import pickle
import os
class model(object):

def __init__ (self):

pickle_path = os.path.join(os.path.dirname(__file__)J 'sentiment_model')

f = open(pickle_path,'rb")
self.pipeline = pickle.load(f)
f.close()

def getSentiment(self, xargs):
return self.pipeline.predict(args[o])[0]

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline

from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.linear_model import LogisticRegression

import pickle

tweets = read_csv("Airline-Sentiment.csv")
X = tweets["text"]
y = tweets["sentiment"]

X_train, X_test, y_train, y_test = train_test_split(X,
2
random_state=111,
test_size=0.2)
model = Pipeline([
(‘vectorizer', CountVectorizer()),
("transformer', TfidfTransformer()),
('classifier', LogisticRegression(solver='sag',
multi_class="multinomial'))

1

model.fit(X_train, y_train)
predictions = model.predict(X_test)

pickle.dump(model, open("sentiment_model”, 'wb')) I

80

AsterixDB Python UDF Demo

CREATE FUNCTION getSciKitSentiment(text)
AS "sentiment", "model.getSentiment"
AT sklearn;

CREATE TYPE businessType AS {
business_id: string

¥

CREATE TYPE reviewType AS {
review_id: string,
business_id: string,
text: string

}s

CREATE DATASET businesses(businessType)
PRIMARY KEY business id;

CREATE DATASET reviews(reviewType)
PRIMARY KEY review id;

Yelp Open Dataset

An all-purpose dataset for learning

The Yelp dataset is a subset of our businesses, reviews, and user data for use in personal, educational, and
academic purposes. Available as JSON files, use it to teach students about databases, to learn NLP, or for
sample production data while you learn how to make mobile apps.

The Dataset

ooooo
> =
N
2 .
n
6,685,900 reviews 192,609 businesses 200,000 pictures 10 metropolitan areas

1,223,094 tips by 1,637,138 users
Over 1.2 million business attributes like hours, parking, availability, and ambience
Aggregated check-ins over time for each of the 192,609 businesses

Demo data

81

That’s Basically It...! Asterixe>

more engine

* Apache AsterixDB Big Data Management System

* Apply MPP parallelism to NoSQL analytics with SQL++!
* Available for applications, teaching, research, ...
 Committers from all over the globe (quite literally)
 We’d be happy to help you get started, if interested!

http://asterixdb.apache.org

— Questions? «—

/ APACHE)

OOOOOOOOOOOOOOOOOOO

http://asterixdb.apache.org

For More: SQL++ Book (or Tutorial)

D. Chamberlin
SQL++ for SQL Users: A Tutorial SQL++ FOR SQL USERS:
A TUTORIAL
or

N1QL for Analytics Query
Language Tutorial ~ a

™
»

g

Couchbase] DON CHAMBERLIN

https://sqlplusplus-tutorial.couchbase.com/tutorial/
https://sqlplusplus-tutorial.couchbase.com/tutorial/

Asterixcs

more engine

